Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\vf}[1]{\mathbf{\boldsymbol{\vec{#1}}}}
\renewcommand{\Hat}[1]{\mathbf{\boldsymbol{\hat{#1}}}}
\let\VF=\vf
\let\HAT=\Hat
\newcommand{\Prime}{{}\kern0.5pt'}
\newcommand{\PARTIAL}[2]{{\partial^2#1\over\partial#2^2}}
\newcommand{\Partial}[2]{{\partial#1\over\partial#2}}
\newcommand{\tr}{{\mathrm tr}}
\newcommand{\CC}{{\mathbb C}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\KK}{{\mathbb K}}
\newcommand{\RR}{{\mathbb R}}
\newcommand{\HR}{{}^*{\mathbb R}}
\renewcommand{\AA}{\vf{A}}
\newcommand{\BB}{\vf{B}}
\newcommand{\CCv}{\vf{C}}
\newcommand{\EE}{\vf{E}}
\newcommand{\FF}{\vf{F}}
\newcommand{\GG}{\vf{G}}
\newcommand{\HHv}{\vf{H}}
\newcommand{\II}{\vf{I}}
\newcommand{\JJ}{\vf{J}}
\newcommand{\KKv}{\vf{Kv}}
\renewcommand{\SS}{\vf{S}}
\renewcommand{\aa}{\VF{a}}
\newcommand{\bb}{\VF{b}}
\newcommand{\ee}{\VF{e}}
\newcommand{\gv}{\VF{g}}
\newcommand{\iv}{\vf{imath}}
\newcommand{\rr}{\VF{r}}
\newcommand{\rrp}{\rr\Prime}
\newcommand{\uu}{\VF{u}}
\newcommand{\vv}{\VF{v}}
\newcommand{\ww}{\VF{w}}
\newcommand{\grad}{\vf{\nabla}}
\newcommand{\zero}{\vf{0}}
\newcommand{\Ihat}{\Hat I}
\newcommand{\Jhat}{\Hat J}
\newcommand{\nn}{\Hat n}
\newcommand{\NN}{\Hat N}
\newcommand{\TT}{\Hat T}
\newcommand{\ihat}{\Hat\imath}
\newcommand{\jhat}{\Hat\jmath}
\newcommand{\khat}{\Hat k}
\newcommand{\nhat}{\Hat n}
\newcommand{\rhat}{\HAT r}
\newcommand{\shat}{\HAT s}
\newcommand{\xhat}{\Hat x}
\newcommand{\yhat}{\Hat y}
\newcommand{\zhat}{\Hat z}
\newcommand{\that}{\Hat\theta}
\newcommand{\phat}{\Hat\phi}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\DD}[1]{D_{\textrm{$#1$}}}
\newcommand{\bra}[1]{\langle#1|}
\newcommand{\ket}[1]{|#1\rangle}
\newcommand{\braket}[2]{\langle#1|#2\rangle}
\newcommand{\LargeMath}[1]{\hbox{\large$#1$}}
\newcommand{\INT}{\LargeMath{\int}}
\newcommand{\OINT}{\LargeMath{\oint}}
\newcommand{\LINT}{\mathop{\INT}\limits_C}
\newcommand{\Int}{\int\limits}
\newcommand{\dint}{\mathchoice{\int\!\!\!\int}{\int\!\!\int}{}{}}
\newcommand{\tint}{\int\!\!\!\int\!\!\!\int}
\newcommand{\DInt}[1]{\int\!\!\!\!\int\limits_{#1~~}}
\newcommand{\TInt}[1]{\int\!\!\!\int\limits_{#1}\!\!\!\int}
\newcommand{\Bint}{\TInt{B}}
\newcommand{\Dint}{\DInt{D}}
\newcommand{\Eint}{\TInt{E}}
\newcommand{\Lint}{\int\limits_C}
\newcommand{\Oint}{\oint\limits_C}
\newcommand{\Rint}{\DInt{R}}
\newcommand{\Sint}{\int\limits_S}
\newcommand{\Item}{\smallskip\item{$\bullet$}}
\newcommand{\LeftB}{\vector(-1,-2){25}}
\newcommand{\RightB}{\vector(1,-2){25}}
\newcommand{\DownB}{\vector(0,-1){60}}
\newcommand{\DLeft}{\vector(-1,-1){60}}
\newcommand{\DRight}{\vector(1,-1){60}}
\newcommand{\Left}{\vector(-1,-1){50}}
\newcommand{\Down}{\vector(0,-1){50}}
\newcommand{\Right}{\vector(1,-1){50}}
\newcommand{\ILeft}{\vector(1,1){50}}
\newcommand{\IRight}{\vector(-1,1){50}}
\newcommand{\Partials}[3]
{\displaystyle{\partial^2#1\over\partial#2\,\partial#3}}
\newcommand{\Jacobian}[4]{\frac{\partial(#1,#2)}{\partial(#3,#4)}}
\newcommand{\JACOBIAN}[6]{\frac{\partial(#1,#2,#3)}{\partial(#4,#5,#6)}}
\newcommand{\LLv}{\vf{L}}
\newcommand{\OOb}{\boldsymbol{O}}
\newcommand{\PPv}{\vf{P}_\text{cm}}
\newcommand{\RRv}{\vf{R}_\text{cm}}
\newcommand{\ff}{\vf{f}}
\newcommand{\pp}{\vf{p}}
\newcommand{\tauv}{\vf{\tau}}
\newcommand{\Lap}{\nabla^2}
\newcommand{\Hop}{H_\text{op}}
\newcommand{\Lop}{L_\text{op}}
\newcommand{\Hhat}{\hat{H}}
\newcommand{\Lhat}{\hat{L}}
\newcommand{\defeq}{\overset{\rm def}{=}}
\newcommand{\absm}{\vert m\vert}
\newcommand{\ii}{\ihat}
\newcommand{\jj}{\jhat}
\newcommand{\kk}{\khat}
\newcommand{\dS}{dS}
\newcommand{\dA}{dA}
\newcommand{\dV}{d\tau}
\renewcommand{\ii}{\xhat}
\renewcommand{\jj}{\yhat}
\renewcommand{\kk}{\zhat}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 21.7 Velocity & Acceleration
Newton’s Laws require a knowledge of velocity and acceleration. In
Section 21.6 , we chose plane polar coordinates, so now we must deal with the problem of how to compute velocity and acceleration as time derivatives of the position vector
\(\rr=r\rhat\) in terms of the coordinates
\(r\) and
\(\phi\) and the basis vectors
\(\rhat\) and
\(\phat\text{.}\) A difficulty arises because
\(\rhat\) (and
\(\phat\) ) are not independent of position and therefore are not independent of time. This problem does not present itself in Cartesian coordinates because
\(\xhat\text{,}\) \(\yhat\text{,}\) and
\(\zhat\) are independent of position. Using the chain rule, the general velocity vector is given by:
\begin{equation}
\vv
= \frac{d\rr}{dt}
= \frac{d}{dt}(r\,\rhat)
= \frac{dr}{dt}\,\rhat + r\,\frac{d\rhat}{dt}\tag{21.7.1}
\end{equation}
To evaluate
(21.7.1) , we need the derivatives of
\(\rhat\) (and
\(\phat\) ) with respect to time.
One method for finding these time derivatives is to exploit the time independence of the Cartesian basis. From
Figure 21.8 , we see that
\(\rhat\) and
\(\phat\) are given, in terms of
\(\xhat\) and
\(\yhat\text{,}\) by
\begin{align}
\rhat\amp= \;\;\;\cos\phi\, \xhat + \sin\phi\, \yhat\notag\\
\phat\amp= -\sin\phi\, \xhat + \cos\phi\, \yhat\tag{21.7.2}
\end{align}
Figure 21.8. The polar basis vectors at the point \(P\) can be found in terms of the Cartesian basis vectors.
You should recognize this basis change as a rotation performed on the \(\xhat\text{,}\) \(\yhat\) basis.
\begin{equation}
\begin{pmatrix}
\rhat \\ \phat
\end{pmatrix}
= \begin{pmatrix}
\;\;\;\cos\phi \amp \sin\phi \\
-\sin\phi \amp \cos\phi
\end{pmatrix}
\begin{pmatrix}
\xhat \\ \yhat
\end{pmatrix}
= R(\phi) \begin{pmatrix} \xhat \\ \yhat \end{pmatrix}\tag{21.7.3}
\end{equation}
Using the chain rule, the general velocity vector is given by:
\begin{equation}
\vv
= \frac{d\rr}{dt}
= \frac{d}{dt}(r\,\rhat)
= \frac{dr}{dt}\,\rhat + r\,\frac{d\rhat}{dt}\tag{21.7.4}
\end{equation}
To evaluate
(21.7.1) , we need the derivatives of
\(\rhat\) (and
\(\phat\) ) with respect to time. Using the definitions in
(21.7.3) above, we obtain:
\begin{align}
\frac{d\rhat}{dt}
\amp= \frac{d}{dt} (\cos\phi\,\xhat + \sin\phi\,\yhat)\tag{21.7.5}\\
\amp = -\sin\phi\frac{d\phi}{dt}\,\xhat + \cos\phi\frac{d\phi}{dt}\,\yhat \notag\\
\amp = \frac{d\phi}{dt}\,\phat\notag\\
\frac{d\phat}{dt}
\amp= \frac{d}{dt} (-\sin\phi\,\xhat + \cos\phi\,\yhat)\notag\\
\amp = -\cos\phi\frac{d\phi}{dt}\,\xhat - \sin\phi\frac{d\phi}{dt}\,\yhat\notag\\
\amp = -\frac{d\phi}{dt}\,\rhat\notag
\end{align}
where we have used the Cartesian expressions
(21.7.2) for the polar basis vectors in the last equalities of each calculation.
Notice that we have used the convenient notation of putting a dot over a symbol to denote time derivative.
Combining these expressions with equation
(21.7.1) gives:
\begin{equation}
\vv =
\dot{r}\,\rhat+ r\dot\phi\,\phat\tag{21.7.6}
\end{equation}
Alternatively, in
Section 21.8 , we use only reasoning about the orthonormality of
\(\rhat\) and
\(\phat\) to find the same result.
Activity 21.3 . Acceleration in Polar Coordinates.
Taking another derivative of
(21.7.6) with respect to time, show that the acceleration is given by
\begin{align}
\aa
\amp = \dot{\vv}\notag\\
\amp = \left( \ddot{r} - r\dot\phi^2 \right) \rhat
+ \left( r\ddot\phi + 2\dot{r}\dot\phi \right) \phat\tag{21.7.7}
\end{align}