Skip to main content\(\newcommand{\vf}[1]{\mathbf{\boldsymbol{\vec{#1}}}}
\renewcommand{\Hat}[1]{\mathbf{\boldsymbol{\hat{#1}}}}
\let\VF=\vf
\let\HAT=\Hat
\newcommand{\Prime}{{}\kern0.5pt'}
\newcommand{\PARTIAL}[2]{{\partial^2#1\over\partial#2^2}}
\newcommand{\Partial}[2]{{\partial#1\over\partial#2}}
\newcommand{\tr}{{\mathrm tr}}
\newcommand{\CC}{{\mathbb C}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\KK}{{\mathbb K}}
\newcommand{\RR}{{\mathbb R}}
\newcommand{\HR}{{}^*{\mathbb R}}
\renewcommand{\AA}{\vf A}
\newcommand{\BB}{\vf B}
\newcommand{\CCv}{\vf C}
\newcommand{\EE}{\vf E}
\newcommand{\FF}{\vf F}
\newcommand{\GG}{\vf G}
\newcommand{\HHv}{\vf H}
\newcommand{\II}{\vf I}
\newcommand{\JJ}{\vf J}
\newcommand{\KKv}{\vf Kv}
\renewcommand{\SS}{\vf S}
\renewcommand{\aa}{\VF a}
\newcommand{\bb}{\VF b}
\newcommand{\ee}{\VF e}
\newcommand{\gv}{\VF g}
\newcommand{\iv}{\vf\imath}
\newcommand{\rr}{\VF r}
\newcommand{\rrp}{\rr\Prime}
\newcommand{\uu}{\VF u}
\newcommand{\vv}{\VF v}
\newcommand{\ww}{\VF w}
\newcommand{\grad}{\vf\nabla}
\newcommand{\zero}{\vf 0}
\newcommand{\Ihat}{\Hat I}
\newcommand{\Jhat}{\Hat J}
\newcommand{\nn}{\Hat n}
\newcommand{\NN}{\Hat N}
\newcommand{\TT}{\Hat T}
\newcommand{\ihat}{\Hat\imath}
\newcommand{\jhat}{\Hat\jmath}
\newcommand{\khat}{\Hat k}
\newcommand{\nhat}{\Hat n}
\newcommand{\rhat}{\HAT r}
\newcommand{\shat}{\HAT s}
\newcommand{\xhat}{\Hat x}
\newcommand{\yhat}{\Hat y}
\newcommand{\zhat}{\Hat z}
\newcommand{\that}{\Hat\theta}
\newcommand{\phat}{\Hat\phi}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\DD}[1]{D_{\textrm{$#1$}}}
\newcommand{\bra}[1]{\langle#1|}
\newcommand{\ket}[1]{|#1/rangle}
\newcommand{\braket}[2]{\langle#1|#2\rangle}
\newcommand{\LargeMath}[1]{\hbox{\large$#1$}}
\newcommand{\INT}{\LargeMath{\int}}
\newcommand{\OINT}{\LargeMath{\oint}}
\newcommand{\LINT}{\mathop{\INT}\limits_C}
\newcommand{\Int}{\int\limits}
\newcommand{\dint}{\mathchoice{\int\!\!\!\int}{\int\!\!\int}{}{}}
\newcommand{\tint}{\int\!\!\!\int\!\!\!\int}
\newcommand{\DInt}[1]{\int\!\!\!\!\int\limits_{#1~~}}
\newcommand{\TInt}[1]{\int\!\!\!\int\limits_{#1}\!\!\!\int}
\newcommand{\Bint}{\TInt{B}}
\newcommand{\Dint}{\DInt{D}}
\newcommand{\Eint}{\TInt{E}}
\newcommand{\Lint}{\int\limits_C}
\newcommand{\Oint}{\oint\limits_C}
\newcommand{\Rint}{\DInt{R}}
\newcommand{\Sint}{\int\limits_S}
\newcommand{\Item}{\smallskip\item{$\bullet$}}
\newcommand{\LeftB}{\vector(-1,-2){25}}
\newcommand{\RightB}{\vector(1,-2){25}}
\newcommand{\DownB}{\vector(0,-1){60}}
\newcommand{\DLeft}{\vector(-1,-1){60}}
\newcommand{\DRight}{\vector(1,-1){60}}
\newcommand{\Left}{\vector(-1,-1){50}}
\newcommand{\Down}{\vector(0,-1){50}}
\newcommand{\Right}{\vector(1,-1){50}}
\newcommand{\ILeft}{\vector(1,1){50}}
\newcommand{\IRight}{\vector(-1,1){50}}
\newcommand{\Partials}[3]
{\displaystyle{\partial^2#1\over\partial#2\,\partial#3}}
\newcommand{\Jacobian}[4]{\frac{\partial(#1,#2)}{\partial(#3,#4)}}
\newcommand{\JACOBIAN}[6]{\frac{\partial(#1,#2,#3)}{\partial(#4,#5,#6)}}
\newcommand{\ii}{\ihat}
\newcommand{\jj}{\jhat}
\newcommand{\kk}{\khat}
\newcommand{\dS}{dS}
\newcommand{\dA}{dA}
\newcommand{\dV}{d\tau}
\renewcommand{\ii}{\xhat}
\renewcommand{\jj}{\yhat}
\renewcommand{\kk}{\zhat}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section B.1 Formulas for Div, Grad, Curl
Subsection Rectangular coordinates
\begin{align*}
d\rr \amp= dx\,\xhat + dy\,\yhat + dz\,\zhat\\
\FF \amp= F_x\,\xhat + F_y\,\yhat + F_z\,\zhat
\end{align*}
\begin{align*}
\grad f \amp=
\Partial{f}{x}\,\xhat + \Partial{f}{y}\,\yhat
+ \Partial{f}{z}\,\zhat\\
\grad\cdot\FF \amp=
\Partial{F_x}{x} + \Partial{F_y}{y} + \Partial{F_z}{z}\\
\grad\times\FF \amp=
\left(\Partial{F_z}{y}-\Partial{F_y}{z}\right)\xhat
+ \left(\Partial{F_x}{z}-\Partial{F_z}{x}\right)\yhat
+ \left(\Partial{F_y}{x}-\Partial{F_x}{y}\right)\zhat\\
\nabla^2 f \amp=
\frac{\partial^2 f}{dx^2}+\frac{\partial^2 f}{dy^2}
+\frac{\partial^2 f}{dz^2}
\end{align*}
Subsection Cylindrical coordinates
\begin{align*}
d\rr \amp= ds\,\shat + s\,d\phi\,\phat + dz\,\zhat\\
\FF \amp= F_s\,\shat + F_\phi\,\phat + F_z\,\zhat
\end{align*}
\begin{align*}
\grad f \amp=
\Partial{f}{s}\,\shat
+ \frac{1}{s}\Partial{f}{\phi}\,\phat
+ \Partial{f}{z}\,\zhat\\
\grad\cdot\FF \amp=
\frac{1}{s}\Partial{}{s}\left({s}F_{s}\right)
+ \frac{1}{s}\Partial{F_\phi}{\phi}
+ \Partial{F_z}{z}\\
\grad\times\FF \amp=
\left(
\frac{1}{s}\Partial{F_z}{\phi} - \Partial{F_\phi}{z}
\right) \shat
+ \left( \Partial{F_s}{z}-\Partial{F_z}{s}\right) \phat
+ \frac{1}{s} \left(
\Partial{}{s}\left({s}F_{\phi}\right) - \Partial{F_s}{\phi}
\right) \zhat\\
\nabla^2 f \amp=
\frac{1}{s}\Partial{}{s}\left(s\Partial{f}{s}\right)
+\frac{1}{s^2}\frac{\partial^2 f}{d\phi^2}
+\frac{\partial^2 f}{dz^2}
\end{align*}
Subsection Spherical coordinates
\begin{align*}
d\rr \amp=
dr\,\rhat + r\,d\theta\,\that + r\,\sin\theta\,d\phi\,\phat\\
\FF \amp= F_r\,\rhat + F_\theta\,\that + F_\phi\,\phat
\end{align*}
\begin{align*}
\grad f \amp=
\Partial{f}{r}\,\rhat
+ \frac{1}{r}\Partial{f}{\theta}\,\that
+ \frac{1}{r\sin\theta}\Partial{f}{\phi}\,\phat\\
\grad\cdot\FF \amp=
\frac{1}{r^2}\Partial{}{r}\left({r^2}F_{r}\right)
+ \frac{1}{r\sin\theta}\Partial{}{\theta}
\left({\sin\theta}F_{\theta}\right)
+ \frac{1}{r\sin\theta}\Partial{F_\phi}{\phi}\\
\grad\times\FF \amp=
\frac{1}{r\sin\theta} \left(
\Partial{}{\theta}\left({\sin\theta}F_{\phi}\right)
- \Partial{F_\theta}{\phi}
\right) \rhat
+ \frac{1}{r} \left(
\frac{1}{\sin\theta} \Partial{F_r}{\phi}
- \Partial{}{r}\left({r}F_{\phi}\right)
\right) \that\\
\amp\qquad
+ \frac{1}{r} \left(
\Partial{}{r}\left({r}F_{\theta}\right) - \Partial{F_r}{\theta}
\right) \phat\\
\nabla^2 f \amp=
\frac{1}{r^2}\frac{\partial}{\partial r}
\left(r^2\Partial{f}{r}\right)
+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}
\left(\sin\theta\Partial{f}{\theta}\right)
+\frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial\phi^2}
\end{align*}