Skip to main content
Logo image

THE GEOMETRY OF MATHEMATICAL METHODS

Section B.3 The Hydrogen Atom

Subsection Spherical Harmonics

Table B.3. The first several spherical harmonic functions
\(\ell\) \(m\) \(Y_\ell^m(\theta,\phi)\)
\(0\) \(0\) \(Y_0^0 = \sqrt{\frac{1}{4\pi}}\)
\(1\) \(0\) \(Y_1^0 = \sqrt{\frac{3}{4\pi}}\cos\theta\)
\(\) \(\pm1\) \(Y_1^{\pm1} = \mp\sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm i\phi}\)
\(2\) \(0\) \(Y_2^0 = \sqrt{\frac{5}{16\pi}}\left(3\cos^2\theta-1\right)\)
\(\) \(\pm1\) \(Y_2^{\pm1} = \mp\sqrt{\frac{15}{8\pi}}\sin\theta\cos\theta e^{\pm i\phi}\)
\(\) \(\pm2\) \(Y_2^{\pm2} = \sqrt{\frac{15}{32\pi}}\sin^2\theta e^{\pm2i\phi}\)
\(3\) \(0\) \(Y_3^0 = \sqrt{\frac{7}{16\pi}}\left(5\cos^3\theta-3\cos\theta\right)\)
\(\) \(\pm1\) \(Y_3^{\pm1} = \mp\sqrt{\frac{21}{64\pi}}\sin\theta \left(5\cos^2\theta-1\right)e^{\pm i\phi}\)
\(\) \(\pm2\) \(Y_3^{\pm2} = \sqrt{\frac{105}{32\pi}}\sin^2\theta\cos\theta e^{\pm2i\phi}\)
\(\) \(\pm3\) \(Y_3^{\pm3} = \sqrt{\frac{35}{64\pi}}\sin^3\theta e^{\pm3i\phi}\)

Subsection Radial Functions

Table B.4. The first several radial functions
\(n\) \(\ell\) \(R_{n \ell}(r)\)
\(1\) \(0\) \(R_{10}(r) = 2\left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{\textstyle{-\frac{Zr}{a_0}}}\)
\(2\) \(0\) \(R_{20}(r) = 2\left(\frac{Z}{2a_0}\right)^{\frac{3}{2}} \left[1-\frac{Zr}{2a_0}\right]e^{\textstyle{-\frac{Zr}{2a_0}}}\)
\(\) \(1\) \(R_{21}(r) = \frac{1}{\sqrt{3}}\left(\frac{Z}{2a_0}\right)^{\frac{3}{2}} \frac{Zr}{a_0}e^{\textstyle{-\frac{Zr}{2a_0}}}\)
\(3\) \(0\) \(R_{30}(r) = 2\left(\frac{Z}{3a_0}\right)^{\frac{3}{2}} \left[ 1-\frac{2Zr}{3a_0}+\frac{2}{27} \left(\frac{Zr}{a_0}\right)^2 \right] e^{\textstyle{-\frac{Zr}{3a_0}}}\)
\(\) \(1\) \(R_{31}(r) = \frac{4\sqrt{2}}{9}\left(\frac{Z}{3a_0}\right)^{\frac{3}{2}} \frac{Zr}{a_0} \left(1-\frac{Zr}{6a_0}\right) e^{\textstyle{-\frac{Zr}{3a_0}}}\)
\(\) \(2\) \(R_{32}(r) = \frac{2\sqrt{2}}{27\sqrt{5}} \left(\frac{Z}{3a_0}\right)^{\frac{3}{2}} \left(\frac{Zr}{a_0} \right)^2 e^{\textstyle{-\frac{Zr}{3a_0}}}\)
\(4\) \(0\) \(R_{40}(r) = 2\left(\frac{Z}{4a_0}\right)^{\frac{3}{2}} \left[ 1-\frac{3Zr}{4a_0}+\frac{1}{8}\left(\frac{Zr}{a_0}\right)^2 -\frac{1}{192}\left(\frac{Zr}{a_0}\right)^3 \right] e^{\textstyle{-\frac{Zr}{4a_0}}}\)
\(\) \(1\) \(R_{41}(r) = \frac{5}{2\sqrt{3}}\left(\frac{Z}{4a_0}\right)^{\frac{3}{2}} \frac{Zr}{a_0} \left[ 1-\frac{Zr}{4a_0}+\frac{1}{80}\left(\frac{Zr}{a_0}\right)^2 \right] e^{\textstyle{-\frac{Zr}{4a_0}}}\)
\(\) \(2\) \(R_{42}(r) = \frac{1}{8\sqrt{5}} \left(\frac{Z}{4a_0}\right)^{\frac{3}{2}} \left(\frac{Zr}{a_0}\right)^2\left(1-\frac{Zr}{12a_0}\right) e^{\textstyle{-\frac{Zr}{4a_0}}}\)
\(\) \(3\) \(R_{43}(r) = \frac{1}{96\sqrt{35}}\left(\frac{Z}{4a_0}\right)^{\frac{3}{2}} \left(\frac{Zr}{a_0}\right)^3 e^{\textstyle{-\frac{Zr}{4a_0}}}\)