Skip to main content
Logo image

THE GEOMETRY OF MATHEMATICAL METHODS

Section 16.4 The Dirac Delta Function

Definition 16.9. The Dirac Delta Function.

The Dirac delta function \(\delta(x)\) has has the following defining properties:
\begin{equation} \delta(x) = \begin{cases} 0\quad \amp x\not= 0\\ \infty\quad\amp x=0 \end{cases}\tag{16.4.1} \end{equation}
\begin{equation} \int_b^c \delta(x)\, dx = 1 \qquad\qquad b\lt 0\lt c\tag{16.4.2} \end{equation}
\begin{equation} x\,\delta(x) \equiv 0\text{.}\tag{16.4.3} \end{equation}

Using the Dirac Delta Function in an Integral.

The properties of the delta function allow us to compute
\begin{align*} \int_{-\infty}^{\infty} f(x)\,\delta(x) \,dx \amp = \int_{-\infty}^{\infty} f(0)\,\delta(x) \,dx\\ \amp = f(0) \int_{-\infty}^{\infty} \delta(x) \,dx\\ \amp = f(0) \end{align*}
In the first equality, it is safe to replace the function \(f(x)\) with its value \(f(0)\) at \(x=0\) since everywhere else the integrand is zero, due to the delta function.
We can shift the “spike” in the delta function as usual, obtaining \(\delta(x-a)\text{.}\) This shifted delta function satisfies
\begin{equation} \int_{-\infty}^{\infty} f(x)\,\delta(x-a) \,dx = f(a)\tag{16.4.4} \end{equation}

To Remember.

The Dirac delta function can be used inside an integral to pick out the value of a function at any desired point.