Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\vf}[1]{\mathbf{\boldsymbol{\vec{#1}}}}
\renewcommand{\Hat}[1]{\mathbf{\boldsymbol{\hat{#1}}}}
\let\VF=\vf
\let\HAT=\Hat
\newcommand{\Prime}{{}\kern0.5pt'}
\newcommand{\PARTIAL}[2]{{\partial^2#1\over\partial#2^2}}
\newcommand{\Partial}[2]{{\partial#1\over\partial#2}}
\newcommand{\tr}{{\mathrm tr}}
\newcommand{\CC}{{\mathbb C}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\KK}{{\mathbb K}}
\newcommand{\RR}{{\mathbb R}}
\newcommand{\HR}{{}^*{\mathbb R}}
\renewcommand{\AA}{\vf{A}}
\newcommand{\BB}{\vf{B}}
\newcommand{\CCv}{\vf{C}}
\newcommand{\EE}{\vf{E}}
\newcommand{\FF}{\vf{F}}
\newcommand{\GG}{\vf{G}}
\newcommand{\HHv}{\vf{H}}
\newcommand{\II}{\vf{I}}
\newcommand{\JJ}{\vf{J}}
\newcommand{\KKv}{\vf{Kv}}
\renewcommand{\SS}{\vf{S}}
\renewcommand{\aa}{\VF{a}}
\newcommand{\bb}{\VF{b}}
\newcommand{\ee}{\VF{e}}
\newcommand{\gv}{\VF{g}}
\newcommand{\iv}{\vf{imath}}
\newcommand{\rr}{\VF{r}}
\newcommand{\rrp}{\rr\Prime}
\newcommand{\uu}{\VF{u}}
\newcommand{\vv}{\VF{v}}
\newcommand{\ww}{\VF{w}}
\newcommand{\grad}{\vf{\nabla}}
\newcommand{\zero}{\vf{0}}
\newcommand{\Ihat}{\Hat I}
\newcommand{\Jhat}{\Hat J}
\newcommand{\nn}{\Hat n}
\newcommand{\NN}{\Hat N}
\newcommand{\TT}{\Hat T}
\newcommand{\ihat}{\Hat\imath}
\newcommand{\jhat}{\Hat\jmath}
\newcommand{\khat}{\Hat k}
\newcommand{\nhat}{\Hat n}
\newcommand{\rhat}{\HAT r}
\newcommand{\shat}{\HAT s}
\newcommand{\xhat}{\Hat x}
\newcommand{\yhat}{\Hat y}
\newcommand{\zhat}{\Hat z}
\newcommand{\that}{\Hat\theta}
\newcommand{\phat}{\Hat\phi}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\DD}[1]{D_{\textrm{$#1$}}}
\newcommand{\bra}[1]{\langle#1|}
\newcommand{\ket}[1]{|#1/rangle}
\newcommand{\braket}[2]{\langle#1|#2\rangle}
\newcommand{\LargeMath}[1]{\hbox{\large$#1$}}
\newcommand{\INT}{\LargeMath{\int}}
\newcommand{\OINT}{\LargeMath{\oint}}
\newcommand{\LINT}{\mathop{\INT}\limits_C}
\newcommand{\Int}{\int\limits}
\newcommand{\dint}{\mathchoice{\int\!\!\!\int}{\int\!\!\int}{}{}}
\newcommand{\tint}{\int\!\!\!\int\!\!\!\int}
\newcommand{\DInt}[1]{\int\!\!\!\!\int\limits_{#1~~}}
\newcommand{\TInt}[1]{\int\!\!\!\int\limits_{#1}\!\!\!\int}
\newcommand{\Bint}{\TInt{B}}
\newcommand{\Dint}{\DInt{D}}
\newcommand{\Eint}{\TInt{E}}
\newcommand{\Lint}{\int\limits_C}
\newcommand{\Oint}{\oint\limits_C}
\newcommand{\Rint}{\DInt{R}}
\newcommand{\Sint}{\int\limits_S}
\newcommand{\Item}{\smallskip\item{$\bullet$}}
\newcommand{\LeftB}{\vector(-1,-2){25}}
\newcommand{\RightB}{\vector(1,-2){25}}
\newcommand{\DownB}{\vector(0,-1){60}}
\newcommand{\DLeft}{\vector(-1,-1){60}}
\newcommand{\DRight}{\vector(1,-1){60}}
\newcommand{\Left}{\vector(-1,-1){50}}
\newcommand{\Down}{\vector(0,-1){50}}
\newcommand{\Right}{\vector(1,-1){50}}
\newcommand{\ILeft}{\vector(1,1){50}}
\newcommand{\IRight}{\vector(-1,1){50}}
\newcommand{\Partials}[3]
{\displaystyle{\partial^2#1\over\partial#2\,\partial#3}}
\newcommand{\Jacobian}[4]{\frac{\partial(#1,#2)}{\partial(#3,#4)}}
\newcommand{\JACOBIAN}[6]{\frac{\partial(#1,#2,#3)}{\partial(#4,#5,#6)}}
\newcommand{\LLv}{\vf{L}}
\newcommand{\OOb}{\boldsymbol{O}}
\newcommand{\PPv}{\vf{P}_\text{cm}}
\newcommand{\RRv}{\vf{R}_\text{cm}}
\newcommand{\ff}{\vf{f}}
\newcommand{\pp}{\vf{p}}
\newcommand{\tauv}{\vf{\tau}}
\newcommand{\Lap}{\nabla^2}
\newcommand{\Hop}{H_\text{op}}
\newcommand{\Lop}{L_\text{op}}
\newcommand{\Hhat}{\hat{H}}
\newcommand{\Lhat}{\hat{L}}
\newcommand{\defeq}{\overset{\rm def}{=}}
\newcommand{\absm}{\vert m\vert}
\newcommand{\ii}{\ihat}
\newcommand{\jj}{\jhat}
\newcommand{\kk}{\khat}
\newcommand{\dS}{dS}
\newcommand{\dA}{dA}
\newcommand{\dV}{d\tau}
\renewcommand{\ii}{\xhat}
\renewcommand{\jj}{\yhat}
\renewcommand{\kk}{\zhat}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 22.11 Spherical Harmonics
We have found that normalized solutions of the
\(\phi\) equation
(22.4.18) satisfying periodic boundary conditions are
\begin{equation}
\Phi(\phi) = \frac{1}{\sqrt{2\pi}} \> e^{im\phi}
\qquad\qquad (m=0,\pm1,\pm2,...)\tag{22.11.1}
\end{equation}
and normalized solutions of the
\(\theta\) equation
(22.4.17) which are regular at the poles are given by
\begin{equation}
P(\cos\theta)
= \sqrt{\frac{(2\ell+1)}{2}
\frac{(\ell-\absm)!}{(\ell+\absm)!}}
\>P_\ell^m(\cos\theta)\tag{22.11.2}
\end{equation}
Combining these yields via multiplication (we assumed solutions of this type when we first did the separation of variables procedure), we obtain the spherical harmonics
\begin{equation}
Y_\ell^m(\theta,\phi)
= (-1)^{(m+|m|)/2}
\sqrt{\frac{(2\ell+1)}{4\pi}
\frac{(\ell-\absm)!}{(\ell+\absm)!}}
\> P_\ell^m(\cos\theta) \> e^{im\phi}\tag{22.11.3}
\end{equation}
where the somewhat peculiar choice of phase is conventional.
The spherical harmonics are orthonormal on the unit sphere:
\begin{equation}
\int\limits_0^{2\pi} \int\limits_0^\pi
\left(Y_{\ell_1}^{m_1}\right)^* Y_{\ell_2}^{m_2}
\sin\theta\,d\theta\,d\phi
= \delta_{\ell_1 \ell_2} \delta_{m_1 m_2}\tag{22.11.4}
\end{equation}
since \(dz=\sin\theta\,d\theta\text{.}\) They are complete in the sense that any sufficiently smooth function \(f\) on the unit sphere can be expanded in a Laplace series as
\begin{equation}
f(\theta,\phi)
= \sum\limits_{\ell=0}^\infty \sum\limits_{m=-\ell}^\ell
a_{\ell m} \, Y_\ell^m(\theta,\phi)\tag{22.11.5}
\end{equation}
where
\begin{equation}
a_{\ell m}
= \int\limits_0^{2\pi} \int\limits_0^\pi \left(Y_\ell^m\right)^*
f(\theta,\phi) \,\sin\theta\,d\theta\,d\phi\tag{22.11.6}
\end{equation}
Example 22.3 . Example.
Suppose you want a function of \((\theta,\phi)\) which satisfies
\begin{equation}
f(\theta,\phi)
= \begin{cases}
\sin\theta \amp 0<\theta<\frac\pi2\\ 0 \amp \text{otherwise}
\end{cases}\tag{22.11.7}
\end{equation}
Then
\(f\) takes the form
(22.11.5) , and the constants
\(a_{\ell m}\) can be determined from
(22.11.6) , yielding
\begin{align}
a_{\ell m}
\amp= \int\limits_0^{2\pi} \int\limits_0^{\pi/2}
\left(Y_\ell^m\right)^* \sin^2\!\theta\,d\theta\,d\phi\notag\\
\amp= N_{\ell m} \int\limits_0^{2\pi} e^{-im\phi} \,d\phi
\int\limits_0^{\pi/2} P_\ell^m(\cos\theta)\,\sin^2\!\theta\,d\theta\tag{22.11.8}
\end{align}
where
\begin{equation}
N_{\ell m}
= (-1)^{(m+|m|)/2}
\sqrt{\frac{(2\ell+1)}{4\pi}
\frac{(\ell-\absm)!}{(\ell+\absm)!}}\tag{22.11.9}
\end{equation}
Thus,
\begin{equation*}
a_{\ell m}
= \begin{cases}
0 \amp (m\ne0)\\
\displaystyle\sqrt{(2\ell+1)\,\pi}
\int\limits_0^{\pi/2} P_\ell(\cos\theta) \,\sin^2\!\theta \,d\theta
\amp (m=0)
\end{cases}
\end{equation*}
For \(m=0\text{,}\) the integral is most easily computed with the substitution ; the first few coefficients are:
\begin{align}
a_{00} \amp= \frac\pi8 \qquad
a_{10} = \frac12 \qquad
a_{20} = -\frac{5\pi}{64}\notag\\
a_{30} \amp= -\frac7{12} \qquad
a_{40} = -\frac{9\pi}{512} \qquad
a_{50} = \frac{77}{240}\tag{22.11.10}
\end{align}
(each of which should be multiplied by \(\sqrt{4\pi/(2\ell+1)}\) ). As you can check by graphing, however, it requires at least twice this many terms to obtain a good approximation.