Skip to main content
Logo image

THE GEOMETRY OF MATHEMATICAL METHODS

Section 22.11 Spherical Harmonics

We have found that normalized solutions of the \(\phi\) equation (22.4.18) satisfying periodic boundary conditions are
\begin{equation} \Phi(\phi) = \frac{1}{\sqrt{2\pi}} \> e^{im\phi} \qquad\qquad (m=0,\pm1,\pm2,...)\tag{22.11.1} \end{equation}
and normalized solutions of the \(\theta\) equation (22.4.17) which are regular at the poles are given by
\begin{equation} P(\cos\theta) = \sqrt{\frac{(2\ell+1)}{2} \frac{(\ell-\absm)!}{(\ell+\absm)!}} \>P_\ell^m(\cos\theta)\tag{22.11.2} \end{equation}
Combining these yields via multiplication (we assumed solutions of this type when we first did the separation of variables procedure), we obtain the spherical harmonics
\begin{equation} Y_\ell^m(\theta,\phi) = (-1)^{(m+|m|)/2} \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-\absm)!}{(\ell+\absm)!}} \> P_\ell^m(\cos\theta) \> e^{im\phi}\tag{22.11.3} \end{equation}
where the somewhat peculiar choice of phase is conventional.
The spherical harmonics are orthonormal on the unit sphere:
\begin{equation} \int\limits_0^{2\pi} \int\limits_0^\pi \left(Y_{\ell_1}^{m_1}\right)^* Y_{\ell_2}^{m_2} \sin\theta\,d\theta\,d\phi = \delta_{\ell_1 \ell_2} \delta_{m_1 m_2}\tag{22.11.4} \end{equation}
since \(dz=\sin\theta\,d\theta\text{.}\) They are complete in the sense that any sufficiently smooth function \(f\) on the unit sphere can be expanded in a Laplace series as
\begin{equation} f(\theta,\phi) = \sum\limits_{\ell=0}^\infty \sum\limits_{m=-\ell}^\ell a_{\ell m} \, Y_\ell^m(\theta,\phi)\tag{22.11.5} \end{equation}
where
\begin{equation} a_{\ell m} = \int\limits_0^{2\pi} \int\limits_0^\pi \left(Y_\ell^m\right)^* f(\theta,\phi) \,\sin\theta\,d\theta\,d\phi\tag{22.11.6} \end{equation}

Example 22.3. Example.

Suppose you want a function of \((\theta,\phi)\) which satisfies
\begin{equation} f(\theta,\phi) = \begin{cases} \sin\theta \amp 0<\theta<\frac\pi2\\ 0 \amp \text{otherwise} \end{cases}\tag{22.11.7} \end{equation}
Then \(f\) takes the form (22.11.5), and the constants \(a_{\ell m}\) can be determined from (22.11.6), yielding
\begin{align} a_{\ell m} \amp= \int\limits_0^{2\pi} \int\limits_0^{\pi/2} \left(Y_\ell^m\right)^* \sin^2\!\theta\,d\theta\,d\phi\notag\\ \amp= N_{\ell m} \int\limits_0^{2\pi} e^{-im\phi} \,d\phi \int\limits_0^{\pi/2} P_\ell^m(\cos\theta)\,\sin^2\!\theta\,d\theta\tag{22.11.8} \end{align}
where
\begin{equation} N_{\ell m} = (-1)^{(m+|m|)/2} \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-\absm)!}{(\ell+\absm)!}}\tag{22.11.9} \end{equation}
Thus,
\begin{equation*} a_{\ell m} = \begin{cases} 0 \amp (m\ne0)\\ \displaystyle\sqrt{(2\ell+1)\,\pi} \int\limits_0^{\pi/2} P_\ell(\cos\theta) \,\sin^2\!\theta \,d\theta \amp (m=0) \end{cases} \end{equation*}
For \(m=0\text{,}\) the integral is most easily computed with the substitution ; the first few coefficients are:
\begin{align} a_{00} \amp= \frac\pi8 \qquad a_{10} = \frac12 \qquad a_{20} = -\frac{5\pi}{64}\notag\\ a_{30} \amp= -\frac7{12} \qquad a_{40} = -\frac{9\pi}{512} \qquad a_{50} = \frac{77}{240}\tag{22.11.10} \end{align}
(each of which should be multiplied by \(\sqrt{4\pi/(2\ell+1)}\)). As you can check by graphing, however, it requires at least twice this many terms to obtain a good approximation.