Skip to main content
\(\newcommand{\vf}[1]{\mathbf{\boldsymbol{\vec{#1}}}} \renewcommand{\Hat}[1]{\mathbf{\boldsymbol{\hat{#1}}}} \let\VF=\vf \let\HAT=\Hat \newcommand{\Prime}{{}\kern0.5pt'} \newcommand{\PARTIAL}[2]{{\partial^2#1\over\partial#2^2}} \newcommand{\Partial}[2]{{\partial#1\over\partial#2}} \newcommand{\tr}{{\mathrm tr}} \newcommand{\CC}{{\mathbb C}} \newcommand{\HH}{{\mathbb H}} \newcommand{\KK}{{\mathbb K}} \newcommand{\RR}{{\mathbb R}} \newcommand{\HR}{{}^*{\mathbb R}} \renewcommand{\AA}{\vf A} \newcommand{\BB}{\vf B} \newcommand{\CCv}{\vf C} \newcommand{\EE}{\vf E} \newcommand{\FF}{\vf F} \newcommand{\GG}{\vf G} \newcommand{\HHv}{\vf H} \newcommand{\II}{\vf I} \newcommand{\JJ}{\vf J} \newcommand{\KKv}{\vf Kv} \renewcommand{\SS}{\vf S} \renewcommand{\aa}{\VF a} \newcommand{\bb}{\VF b} \newcommand{\ee}{\VF e} \newcommand{\gv}{\VF g} \newcommand{\iv}{\vf\imath} \newcommand{\rr}{\VF r} \newcommand{\rrp}{\rr\Prime} \newcommand{\uu}{\VF u} \newcommand{\vv}{\VF v} \newcommand{\ww}{\VF w} \newcommand{\grad}{\vf\nabla} \newcommand{\zero}{\vf 0} \newcommand{\Ihat}{\Hat I} \newcommand{\Jhat}{\Hat J} \newcommand{\nn}{\Hat n} \newcommand{\NN}{\Hat N} \newcommand{\TT}{\Hat T} \newcommand{\ihat}{\Hat\imath} \newcommand{\jhat}{\Hat\jmath} \newcommand{\khat}{\Hat k} \newcommand{\nhat}{\Hat n} \newcommand{\rhat}{\HAT r} \newcommand{\shat}{\HAT s} \newcommand{\xhat}{\Hat x} \newcommand{\yhat}{\Hat y} \newcommand{\zhat}{\Hat z} \newcommand{\that}{\Hat\theta} \newcommand{\phat}{\Hat\phi} \newcommand{\LL}{\mathcal{L}} \newcommand{\DD}[1]{D_{\textrm{$#1$}}} \newcommand{\bra}[1]{\langle#1|} \newcommand{\ket}[1]{|#1/rangle} \newcommand{\braket}[2]{\langle#1|#2\rangle} \newcommand{\LargeMath}[1]{\hbox{\large$#1$}} \newcommand{\INT}{\LargeMath{\int}} \newcommand{\OINT}{\LargeMath{\oint}} \newcommand{\LINT}{\mathop{\INT}\limits_C} \newcommand{\Int}{\int\limits} \newcommand{\dint}{\mathchoice{\int\!\!\!\int}{\int\!\!\int}{}{}} \newcommand{\tint}{\int\!\!\!\int\!\!\!\int} \newcommand{\DInt}[1]{\int\!\!\!\!\int\limits_{#1~~}} \newcommand{\TInt}[1]{\int\!\!\!\int\limits_{#1}\!\!\!\int} \newcommand{\Bint}{\TInt{B}} \newcommand{\Dint}{\DInt{D}} \newcommand{\Eint}{\TInt{E}} \newcommand{\Lint}{\int\limits_C} \newcommand{\Oint}{\oint\limits_C} \newcommand{\Rint}{\DInt{R}} \newcommand{\Sint}{\int\limits_S} \newcommand{\Item}{\smallskip\item{$\bullet$}} \newcommand{\LeftB}{\vector(-1,-2){25}} \newcommand{\RightB}{\vector(1,-2){25}} \newcommand{\DownB}{\vector(0,-1){60}} \newcommand{\DLeft}{\vector(-1,-1){60}} \newcommand{\DRight}{\vector(1,-1){60}} \newcommand{\Left}{\vector(-1,-1){50}} \newcommand{\Down}{\vector(0,-1){50}} \newcommand{\Right}{\vector(1,-1){50}} \newcommand{\ILeft}{\vector(1,1){50}} \newcommand{\IRight}{\vector(-1,1){50}} \newcommand{\Partials}[3] {\displaystyle{\partial^2#1\over\partial#2\,\partial#3}} \newcommand{\Jacobian}[4]{\frac{\partial(#1,#2)}{\partial(#3,#4)}} \newcommand{\JACOBIAN}[6]{\frac{\partial(#1,#2,#3)}{\partial(#4,#5,#6)}} \newcommand{\ii}{\ihat} \newcommand{\jj}{\jhat} \newcommand{\kk}{\khat} \newcommand{\dS}{dS} \newcommand{\dA}{dA} \newcommand{\dV}{d\tau} \renewcommand{\ii}{\xhat} \renewcommand{\jj}{\yhat} \renewcommand{\kk}{\zhat} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
THE GEOMETRY OF MATHEMATICAL METHODS
Corinne A. Manogue, Tevian Dray
Contents
Index
Prev
Up
Next
Contents
Prev
Up
Next
Front Matter
Colophon
1
Coordinates and Vectors
Polar Coordinates
Curvilinear Coordinates
Change of Coordinates
Vectors
Bases
Unit Vectors
The Dot Product
Visualizing the Dot Product
The Law of Cosines
Addition Formulas
Orthonormal Basis Vectors
Polar basis vectors
Orthonormality of Basis Vectors
The Position Vector as a Vector Field
The Position Vector in Curvilinear Coordinates
The Distance Formula
Scalar Fields
Vector Fields
The Cross Product
Lines and Planes
Linearity of the Dot and Cross Products
2
Complex Numbers
The Complex Plane
Complex Conjugate and Norm
Algebra with Complex Numbers: Rectangular Form
Division: Rectangular Form
Euler's Formula
The Exponential Function
Exponential Form
Sums of Harmonic Functions
Roots of Complex Numbers
Logarithms of Complex Numbers
3
Operations with Matrices
Matrix Addition
Scalar Multiplication
Matrix Multiplication
Transpose
Hermitian Adjoint
Dot Products
Inner Products for Complex Vectors
Trace
Determinants
Inverses
4
Eigenvectors and Eigenvalues
What are Eigenvectors?
Finding Eigenvalues
Finding Eigenvectors
Normalization of Eigenvectors
Diagonal Matrices
Degeneracy
5
Special Matrices
Definition of Hermitian Matrices
Properties of Hermitian Matrices
Commuting Matrices
Unitary Matrices
Properties of Unitary Matrices
Parameterization of Hermitian and Unitary Matrices
Projection Operators
Matrix Exponentials
Using Eigenvectors as a Natural Basis
Change of Basis
Matrix Decompositions
Evolution Equation
Symmetry Operations
6
Differentials
Review of Single Variable Differentiation
Derivative Notation
Thick Derivatives
Differentials
Rules for Differentials
Properties of Differentials
Substitution
Differentials: Summary
The Multivariable Differential
7
Chain Rule
Chain Rule
Chain Rule via Tree Diagrams
Applications of Chain Rule
Interpreting Differentials
Things not to do with Differentials
8
The Vector Differential
The Vector Differential
\(d\rr\)
Finding
\(d\rr\)
on Rectangular Paths
Other Coordinate Systems
Calculating Infinitesimal Distance in Cylindrical and Spherical Coordinates
Calculating
\(d\rr\)
in Curvilinear Coordinates
Scalar Surface Elements
Triple Integrals in Cylindrical and Spherical Coordinates
Using
\(d\rr\)
on More General Paths
Use What You Know
9
Gradient
The Geometry of Gradient
The Gradient in Rectangular Coordinates
Properties of the Gradient
Visualizing the Geometry of the Gradient
Using Technology to Visualize the Gradient
Contour Diagrams
Directional Derivatives
The Gradient in Curvilinear Coordinates
10
Integration
Review of Single Variable Integration
Scalar Line Integrals
Vector Line Integrals
General Surface Elements
Vector Surface Elements
Scalar Surface Integrals
Volume Integrals
11
Vector Line Integrals
Flux
Dot Products and Components
Highly Symmetric Surfaces
Less Symmetric Surfaces
12
Derivatives of Vector Fields
The Definition of Divergence
The Divergence in Two Dimensions
Exploring the Divergence
The Divergence in Curvilinear Coordinates
Exploring the Divergence in Polar Coordinates
Visualizing Divergence
The Divergence Theorem
The Geometry of Curl
The Definition of Curl
Exploring the Curl
The Curl in Curvilinear Coordinates
Exploring the Curl in Polar Coordinates
Visualizing Curl
Stokes' Theorem
Second derivatives
The Laplacian
13
Power Series
Definition of Power Series
Calculating Power Series Coefficients
Visualization of Power Series Approximations
Discussion of Approximations using Power Series
Using Technology to Explore Power Series Approximations
Guessing Power Series from Graphs
Common Power Series
Dimensions in Power Series
Convergence of Power Series
Theorems about Power Series
14
Vector Spaces
Definition of a Vector Space
Definition and Properties of an Inner Product
Visualizing the Dot Product in Higher Dimensions
Visualizing the Product of Two Functions
Inner Products of Functions
Linear Operators: Definitions and Examples
Linear Operators (Advanced)
15
Ordinary Differential Equations
Definitions
First-Order ODEs: Forms and Theorems
Separable ODEs
Exact ODEs
Theorems about Linear ODEs
Constant Coefficients, Homogeneous, Linear ODEs
Linear Independence
Constant Coefficients, Inhomogeneous
Power Series Solutions: Theorem
Power Series Solutions: Method/Example
16
Fourier Series
Fourier Series Motivation
Fourier Basis Functions
Inner Products of Harmonic Functions
Completeness
Fourier Coefficients
Alternative Forms of Fourier Series
Fourier Series Example
Fourier Series: Worked Example
Fourier Series: Exploration
Fourier Series: Small Group Activity
The Gibbs Phenomenon
Symmetries
17
Delta Functions
Step Functions
The Dirac Delta Function
Properties of the Dirac Delta Function
Representations of the Dirac Delta Function
The Dirac Delta Function in Three Dimensions
The Exponential Representation of the Dirac Delta Function
18
Fourier Transforms
Gaussians
Normalization of the Gaussian
Definition of the Fourier Transform
Fourier Transform of the Delta Function
Properties of the Fourier Transform
Examples of Fourier Transforms
Using Technology to Calculate and Graph Fourier Transforms
Fourier Uncertainties
Wave Packets
19
Partial Differential Equations
Important PDEs in Physics
Classification of PDEs
PDE Theorems
Separation of Variables
Sturm–Liouville Theory
Spherical Harmonics
20
Classical Mechanics of Orbits
Graphs in Polar Coordinates
Effective Potential
Effective Potential and Orbits
21
Quantum Mechanics
States on a Ring
Legendre Expansions
Legendre Series: Worked Example
Back Matter
A
Standard Algebra Strategies
Completing the Square
The Quadratic Formula
B
Formulas
Formulas for Div, Grad, Curl
C
Symbols
D
Notation
E
Definitions
Bibliography
Sections from Other Books
Index
Authored in PreTeXt
Section
4.1
What are Eigenvectors?