Skip to main content\(\newcommand{\vf}[1]{\mathbf{\boldsymbol{\vec{#1}}}}
\renewcommand{\Hat}[1]{\mathbf{\boldsymbol{\hat{#1}}}}
\let\VF=\vf
\let\HAT=\Hat
\newcommand{\Prime}{{}\kern0.5pt'}
\newcommand{\PARTIAL}[2]{{\partial^2#1\over\partial#2^2}}
\newcommand{\Partial}[2]{{\partial#1\over\partial#2}}
\newcommand{\tr}{{\mathrm tr}}
\newcommand{\CC}{{\mathbb C}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\KK}{{\mathbb K}}
\newcommand{\RR}{{\mathbb R}}
\newcommand{\HR}{{}^*{\mathbb R}}
\renewcommand{\AA}{\vf{A}}
\newcommand{\BB}{\vf{B}}
\newcommand{\CCv}{\vf{C}}
\newcommand{\EE}{\vf{E}}
\newcommand{\FF}{\vf{F}}
\newcommand{\GG}{\vf{G}}
\newcommand{\HHv}{\vf{H}}
\newcommand{\II}{\vf{I}}
\newcommand{\JJ}{\vf{J}}
\newcommand{\KKv}{\vf{Kv}}
\renewcommand{\SS}{\vf{S}}
\renewcommand{\aa}{\VF{a}}
\newcommand{\bb}{\VF{b}}
\newcommand{\ee}{\VF{e}}
\newcommand{\gv}{\VF{g}}
\newcommand{\iv}{\vf{imath}}
\newcommand{\rr}{\VF{r}}
\newcommand{\rrp}{\rr\Prime}
\newcommand{\uu}{\VF{u}}
\newcommand{\vv}{\VF{v}}
\newcommand{\ww}{\VF{w}}
\newcommand{\grad}{\vf{\nabla}}
\newcommand{\zero}{\vf{0}}
\newcommand{\Ihat}{\Hat I}
\newcommand{\Jhat}{\Hat J}
\newcommand{\nn}{\Hat n}
\newcommand{\NN}{\Hat N}
\newcommand{\TT}{\Hat T}
\newcommand{\ihat}{\Hat\imath}
\newcommand{\jhat}{\Hat\jmath}
\newcommand{\khat}{\Hat k}
\newcommand{\nhat}{\Hat n}
\newcommand{\rhat}{\HAT r}
\newcommand{\shat}{\HAT s}
\newcommand{\xhat}{\Hat x}
\newcommand{\yhat}{\Hat y}
\newcommand{\zhat}{\Hat z}
\newcommand{\that}{\Hat\theta}
\newcommand{\phat}{\Hat\phi}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\DD}[1]{D_{\textrm{$#1$}}}
\newcommand{\bra}[1]{\langle#1|}
\newcommand{\ket}[1]{|#1/rangle}
\newcommand{\braket}[2]{\langle#1|#2\rangle}
\newcommand{\LargeMath}[1]{\hbox{\large$#1$}}
\newcommand{\INT}{\LargeMath{\int}}
\newcommand{\OINT}{\LargeMath{\oint}}
\newcommand{\LINT}{\mathop{\INT}\limits_C}
\newcommand{\Int}{\int\limits}
\newcommand{\dint}{\mathchoice{\int\!\!\!\int}{\int\!\!\int}{}{}}
\newcommand{\tint}{\int\!\!\!\int\!\!\!\int}
\newcommand{\DInt}[1]{\int\!\!\!\!\int\limits_{#1~~}}
\newcommand{\TInt}[1]{\int\!\!\!\int\limits_{#1}\!\!\!\int}
\newcommand{\Bint}{\TInt{B}}
\newcommand{\Dint}{\DInt{D}}
\newcommand{\Eint}{\TInt{E}}
\newcommand{\Lint}{\int\limits_C}
\newcommand{\Oint}{\oint\limits_C}
\newcommand{\Rint}{\DInt{R}}
\newcommand{\Sint}{\int\limits_S}
\newcommand{\Item}{\smallskip\item{$\bullet$}}
\newcommand{\LeftB}{\vector(-1,-2){25}}
\newcommand{\RightB}{\vector(1,-2){25}}
\newcommand{\DownB}{\vector(0,-1){60}}
\newcommand{\DLeft}{\vector(-1,-1){60}}
\newcommand{\DRight}{\vector(1,-1){60}}
\newcommand{\Left}{\vector(-1,-1){50}}
\newcommand{\Down}{\vector(0,-1){50}}
\newcommand{\Right}{\vector(1,-1){50}}
\newcommand{\ILeft}{\vector(1,1){50}}
\newcommand{\IRight}{\vector(-1,1){50}}
\newcommand{\Partials}[3]
{\displaystyle{\partial^2#1\over\partial#2\,\partial#3}}
\newcommand{\Jacobian}[4]{\frac{\partial(#1,#2)}{\partial(#3,#4)}}
\newcommand{\JACOBIAN}[6]{\frac{\partial(#1,#2,#3)}{\partial(#4,#5,#6)}}
\newcommand{\LLv}{\vf{L}}
\newcommand{\OOb}{\boldsymbol{O}}
\newcommand{\PPv}{\vf{P}_\text{cm}}
\newcommand{\RRv}{\vf{R}_\text{cm}}
\newcommand{\ff}{\vf{f}}
\newcommand{\pp}{\vf{p}}
\newcommand{\tauv}{\vf{\tau}}
\newcommand{\Lap}{\nabla^2}
\newcommand{\Hop}{H_\text{op}}
\newcommand{\Lop}{L_\text{op}}
\newcommand{\Hhat}{\hat{H}}
\newcommand{\Lhat}{\hat{L}}
\newcommand{\defeq}{\overset{\rm def}{=}}
\newcommand{\absm}{\vert m\vert}
\newcommand{\ii}{\ihat}
\newcommand{\jj}{\jhat}
\newcommand{\kk}{\khat}
\newcommand{\dS}{dS}
\newcommand{\dA}{dA}
\newcommand{\dV}{d\tau}
\renewcommand{\ii}{\xhat}
\renewcommand{\jj}{\yhat}
\renewcommand{\kk}{\zhat}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix C Symbols
Symbol |
Description |
Location |
\(z=x+iy\) |
the rectangular form of a complex number \(z\) with real part \(x\) and imaginary part \(y\)
|
Definition 2.1 |
\(\mathrm{Re}\, z,\; \Re\, z\) |
the real part of a complex number \(z\) or the real axis in the complex plane |
Notation 2.1 |
\(\mathrm{Im}\, z,\; \Im\, z\) |
the imaginary part of a complex number \(z\) or the imaginary axis in the complex plane |
Notation 2.1 |
\(z^*,\;\bar{z}\) |
complex conjugate of a complex number \(z\)
|
Definition 2.3 |
\(|z|\) |
norm of a complex number \(z\)
|
Definition 2.5 |
\(z = re^{i\phi}\) |
the exponential form of a complex number \(z\)
|
Definition 2.9 |
\(M^T\) |
transpose of a matrix \(M\)
|
Paragraph |
\(A \left|v\right> = \lambda \left|v\right>\) |
the eigenvalue/eigenvector equation for a linear operator \(A\)
|
Definition 4.1 |
\([M,N]\equiv MN-NM\) |
the commutator of two operators \(M\) and \(N\)
|
Definition 5.1 |
\(N^\dagger=N^*{}^T\) |
the Hermitian conjugate (or adjoint) of a matrix \(N\) \(A\)
|
Definition 5.2 |
\(P_v^2 = P_v\) |
the definition of a projection operator \(P_v\)
|
Definition 5.3 |
\(P_v = |v \rangle \langle v|\) |
the bra-ket form of a projection operator \(P_v\)
|
Paragraphs |
\(\left\{\sigma_x, \sigma_y, \sigma_z\right\}\) |
Pauli matrices |
Paragraph |
\(\frac{dy}{dx}\) |
Leibniz notation for derivative |
Notation 6.1 |
\(y^\prime\) |
Lagrange notation for derivative (w.r.t. \(x\)) |
Notation 6.1 |
\(\dot{y}\) |
Newton notation for derivative (w.r.t. \(t\)) |
Notation 6.1 |
\(\forall\) |
“for all” |
Paragraph |
\(\left\langle \vec{u}\vert \vec{v}\right\rangle\) |
the inner product of the vectors \(\left\vert \vec{u}\right\rangle\) and \(\left\vert \vec{v}\right\rangle\)
|
Definition 14.2 |
\(\LL\) |
linear differential operator |
Notation 15.1 |
\(\delta_{ij}\) |
the Kronecker Delta |
Definition 16.1 |
\(\Theta(x)\) |
the step function (alternatively, theta or Heaviside function) |
Definition 16.5 |
\(\delta(x)\) |
the Dirac delta function (alternatively, distribution) |
Definition 16.9 |