Skip to main content
Logo image

THE GEOMETRY OF MATHEMATICAL METHODS

Appendix C Symbols

Symbol Description Location
\(z=x+iy\) the rectangular form of a complex number \(z\) with real part \(x\) and imaginary part \(y\) Definition 2.1
\(\mathrm{Re}\, z,\; \Re\, z\) the real part of a complex number \(z\) or the real axis in the complex plane Notation 2.1
\(\mathrm{Im}\, z,\; \Im\, z\) the imaginary part of a complex number \(z\) or the imaginary axis in the complex plane Notation 2.1
\(z^*,\;\bar{z}\) complex conjugate of a complex number \(z\) Definition 2.3
\(|z|\) norm of a complex number \(z\) Definition 2.5
\(z = re^{i\phi}\) the exponential form of a complex number \(z\) Definition 2.9
\(M^T\) transpose of a matrix \(M\) Paragraph
\(A \left|v\right> = \lambda \left|v\right>\) the eigenvalue/eigenvector equation for a linear operator \(A\) Definition 4.1
\([M,N]\equiv MN-NM\) the commutator of two operators \(M\) and \(N\) Definition 5.1
\(N^\dagger=N^*{}^T\) the Hermitian conjugate (or adjoint) of a matrix \(N\) \(A\) Definition 5.2
\(P_v^2 = P_v\) the definition of a projection operator \(P_v\) Definition 5.3
\(P_v = |v \rangle \langle v|\) the bra-ket form of a projection operator \(P_v\) Paragraphs
\(\left\{\sigma_x, \sigma_y, \sigma_z\right\}\) Pauli matrices Paragraph
\(\frac{dy}{dx}\) Leibniz notation for derivative Notation 6.1
\(y^\prime\) Lagrange notation for derivative (w.r.t. \(x\)) Notation 6.1
\(\dot{y}\) Newton notation for derivative (w.r.t. \(t\)) Notation 6.1
\(\forall\) “for all” Paragraph
\(\left\langle \vec{u}\vert \vec{v}\right\rangle\) the inner product of the vectors \(\left\vert \vec{u}\right\rangle\) and \(\left\vert \vec{v}\right\rangle\) Definition 14.2
\(\LL\) linear differential operator Notation 15.1
\(\delta_{ij}\) the Kronecker Delta Definition 16.1
\(\Theta(x)\) the step function (alternatively, theta or Heaviside function) Definition 16.5
\(\delta(x)\) the Dirac delta function (alternatively, distribution) Definition 16.9