Skip to main content
Logo image

THE GEOMETRY OF MATHEMATICAL METHODS

Section 3.8 Trace

The trace of a (square) matrix is just the sum of all of its diagonal elements. In terms of components,
\begin{equation} \mathrm{tr}(A)=\sum_i A_{ii}\text{.}\tag{3.8.1} \end{equation}
For example, if
\begin{equation} A=\begin{pmatrix} 1\amp 2\amp 3\\ 4\amp 5\amp 6\\ 7\amp 8\amp 9 \end{pmatrix}\tag{3.8.2} \end{equation}
then
\begin{equation} \mathrm{tr}(A)=1+5+9=15\text{.}\tag{3.8.3} \end{equation}

Checkpoint 3.5. Try it yourself: Trace.

Compute \(\mathrm{tr}(B)\) if
\begin{equation} B = \begin{pmatrix} 1\amp 34\amp 5\\ 23\amp 5\amp 98\\ 132\amp 7\amp 9 \end{pmatrix}\text{.}\tag{3.8.4} \end{equation}
Solution.
\begin{equation} \tr(B) = 1 + 5 + 9 = 15\text{.}\tag{3.8.5} \end{equation}