Skip to main content Contents Index
Prev Up Next \(\newcommand{\vf}[1]{\mathbf{\boldsymbol{\vec{#1}}}}
\renewcommand{\Hat}[1]{\mathbf{\boldsymbol{\hat{#1}}}}
\let\VF=\vf
\let\HAT=\Hat
\newcommand{\Prime}{{}\kern0.5pt'}
\newcommand{\PARTIAL}[2]{{\partial^2#1\over\partial#2^2}}
\newcommand{\Partial}[2]{{\partial#1\over\partial#2}}
\newcommand{\tr}{{\mathrm tr}}
\newcommand{\CC}{{\mathbb C}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\KK}{{\mathbb K}}
\newcommand{\RR}{{\mathbb R}}
\newcommand{\HR}{{}^*{\mathbb R}}
\renewcommand{\AA}{\vf A}
\newcommand{\BB}{\vf B}
\newcommand{\CCv}{\vf C}
\newcommand{\EE}{\vf E}
\newcommand{\FF}{\vf F}
\newcommand{\GG}{\vf G}
\newcommand{\HHv}{\vf H}
\newcommand{\II}{\vf I}
\newcommand{\JJ}{\vf J}
\newcommand{\KKv}{\vf Kv}
\renewcommand{\SS}{\vf S}
\renewcommand{\aa}{\VF a}
\newcommand{\bb}{\VF b}
\newcommand{\ee}{\VF e}
\newcommand{\gv}{\VF g}
\newcommand{\iv}{\vf\imath}
\newcommand{\rr}{\VF r}
\newcommand{\rrp}{\rr\Prime}
\newcommand{\uu}{\VF u}
\newcommand{\vv}{\VF v}
\newcommand{\ww}{\VF w}
\newcommand{\grad}{\vf\nabla}
\newcommand{\zero}{\vf 0}
\newcommand{\Ihat}{\Hat I}
\newcommand{\Jhat}{\Hat J}
\newcommand{\nn}{\Hat n}
\newcommand{\NN}{\Hat N}
\newcommand{\TT}{\Hat T}
\newcommand{\ihat}{\Hat\imath}
\newcommand{\jhat}{\Hat\jmath}
\newcommand{\khat}{\Hat k}
\newcommand{\nhat}{\Hat n}
\newcommand{\rhat}{\HAT r}
\newcommand{\shat}{\HAT s}
\newcommand{\xhat}{\Hat x}
\newcommand{\yhat}{\Hat y}
\newcommand{\zhat}{\Hat z}
\newcommand{\that}{\Hat\theta}
\newcommand{\phat}{\Hat\phi}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\DD}[1]{D_{\textrm{$#1$}}}
\newcommand{\bra}[1]{\langle#1|}
\newcommand{\ket}[1]{|#1/rangle}
\newcommand{\braket}[2]{\langle#1|#2\rangle}
\newcommand{\LargeMath}[1]{\hbox{\large$#1$}}
\newcommand{\INT}{\LargeMath{\int}}
\newcommand{\OINT}{\LargeMath{\oint}}
\newcommand{\LINT}{\mathop{\INT}\limits_C}
\newcommand{\Int}{\int\limits}
\newcommand{\dint}{\mathchoice{\int\!\!\!\int}{\int\!\!\int}{}{}}
\newcommand{\tint}{\int\!\!\!\int\!\!\!\int}
\newcommand{\DInt}[1]{\int\!\!\!\!\int\limits_{#1~~}}
\newcommand{\TInt}[1]{\int\!\!\!\int\limits_{#1}\!\!\!\int}
\newcommand{\Bint}{\TInt{B}}
\newcommand{\Dint}{\DInt{D}}
\newcommand{\Eint}{\TInt{E}}
\newcommand{\Lint}{\int\limits_C}
\newcommand{\Oint}{\oint\limits_C}
\newcommand{\Rint}{\DInt{R}}
\newcommand{\Sint}{\int\limits_S}
\newcommand{\Item}{\smallskip\item{$\bullet$}}
\newcommand{\LeftB}{\vector(-1,-2){25}}
\newcommand{\RightB}{\vector(1,-2){25}}
\newcommand{\DownB}{\vector(0,-1){60}}
\newcommand{\DLeft}{\vector(-1,-1){60}}
\newcommand{\DRight}{\vector(1,-1){60}}
\newcommand{\Left}{\vector(-1,-1){50}}
\newcommand{\Down}{\vector(0,-1){50}}
\newcommand{\Right}{\vector(1,-1){50}}
\newcommand{\ILeft}{\vector(1,1){50}}
\newcommand{\IRight}{\vector(-1,1){50}}
\newcommand{\Partials}[3]
{\displaystyle{\partial^2#1\over\partial#2\,\partial#3}}
\newcommand{\Jacobian}[4]{\frac{\partial(#1,#2)}{\partial(#3,#4)}}
\newcommand{\JACOBIAN}[6]{\frac{\partial(#1,#2,#3)}{\partial(#4,#5,#6)}}
\newcommand{\ii}{\ihat}
\newcommand{\jj}{\jhat}
\newcommand{\kk}{\khat}
\newcommand{\dS}{dS}
\newcommand{\dA}{dA}
\newcommand{\dV}{d\tau}
\renewcommand{\ii}{\xhat}
\renewcommand{\jj}{\yhat}
\renewcommand{\kk}{\zhat}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section A.2 The Quadratic Formula
Definition A.1 . The Quadratic Formula.
The quadratic formula gives the solution of the second-order polynomial equation
\begin{equation}
ax^2 + bx + c = 0\tag{A.2.1}
\end{equation}
i.e.
\begin{equation}
x=\frac{1}{2a}\left\{-b\pm\sqrt{b^2-4ac}\right\}\tag{A.2.2}
\end{equation}
The proof of the quadratic formula involves completing the square, see
Section A.1 . Starting from
\begin{equation}
ax^2 + bx + c = 0\tag{A.2.3}
\end{equation}
we immediately have
\begin{equation}
a \left(x+\frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c = 0\tag{A.2.4}
\end{equation}
so that
\begin{align}
\left(x+\frac{b}{2a}\right)^2
\amp = \frac{b^2}{4a^2} - \frac{c}{a}\tag{A.2.5}\\
\amp = \frac{b^2-4ac}{4a^2} .\tag{A.2.6}
\end{align}
Taking the square root of both sides and rearranging terms yields the quadratic formula in its standard form
(A.2.2) .
Definition A.2 . Degeneracy.
An
\(n\) th-order polynomial always has
\(n\) (complex) roots, but these roots may be repeated. In physics contexts, we call the physical quantity represented by the repeated root
degenerate , see the contexts of matrix eigenvalues
Section 4.2 and solutions of ODEs
Section 15.6 . A root that is repeated
\(m\) times is called
\(m\) -fold degenerate.