Skip to main content

THE GEOMETRY OF CENTRAL FORCES

Section 16.4 General Solution of the Radial Equation

The general solution of (16.2.12) is the associated Laguerre polynomial. First let’s look at the ordinary Laguerre polynomials of degree \(q\text{,}\) which are obtained from Rodrigues’ formula
\begin{equation} L_q(\rho) = e^\rho \frac{d^q}{d\rho^q}\left(\rho^q e^{-\rho}\right)\tag{16.4.1} \end{equation}
The associated Laguerre polynomials are then defined as
\begin{equation} L_q^p(\rho) = \frac{d^p}{d\rho^p} L_q(\rho)\tag{16.4.2} \end{equation}
which is a polynomial of degree \(q-p\text{.}\) The general solution of (16.2.12) is the associated Laguerre polynomial:
\begin{equation} H(\rho) = L_{n+\ell}^{2\ell+1}(\rho)\tag{16.4.3} \end{equation}
a polynomial of degree \((n+\ell)-(2\ell+1)=n-\ell-1\text{,}\) as expected corresponding to the value of \(j_\text{max}\) given by (16.3.11).
The complete solution for \(R(r)\) is then
\begin{equation} R_{n\ell}(r) = N_{n\ell}\, r^\ell\, e^{-Zr/na_0}\, L_{n+\ell}^{2\ell+1}(2Zr/na_0)\tag{16.4.4} \end{equation}
where \(N_{n\ell}\) is a normalization constant. Because the \(Y_\ell^m(\theta,\phi)\)are separately normalized, the normalization of \(\psi(r,\theta,\phi)=R_{n\ell}(r)Y_\ell^m(\theta,\phi)\) then requires that the \(R_{n\ell}(r)\) be normalized:
\begin{equation} \int_0^\infty r^2 dr\, \vert R_{n\ell}(r)\vert^2 = 1\tag{16.4.5} \end{equation}
Following a tedious but straightforward calculation,
\begin{equation} N_{n\ell} = \left[ \left( \frac{2Z}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3} \right]^{1/2} \left( \frac{2Z}{na_0} \right)^\ell\tag{16.4.6} \end{equation}
so that the complete solution for \(R(r)\) is then
\begin{align} R_{n\ell}(r) \amp = \left[ \left( \frac{2Z}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3} \right]^{1/2}\notag\\ \amp\qquad e^{-Zr/na_0} \left( \frac{2Zr}{na_0} \right)^\ell L_{n+\ell}^{2\ell+1}(2Zr/na_0)\tag{16.4.7} \end{align}
A table of the lowest energy radial wave functions can be found in Section B.3.