Skip to main content

THE GEOMETRY OF CENTRAL FORCES

Section 4.6 Fourier Series Example

Let’s consider an example. Suppose \(f(x)\) describes a square wave of height \(C\text{,}\) so that
\begin{equation} f(x) = C\, \Theta\left(\frac{L}{2}-x\right)= \begin{cases} C \amp (0\le x\lt \frac{L}{2}) \\ 0 \amp (\frac{L}{2}\lt x\le L) \end{cases}\tag{4.6.1} \end{equation}
where the step function \(\Theta\) is defined in [6] (The value of \(f\) at the single point \(x=L/2\) doesn’t matter).
According to the previous sections, we have
\begin{equation} f(x) = \frac12 a_0 + \sum_{n=1}^\infty a_n \cos\left(\frac{2\pi n x}{L}\right) + \sum_{n=1}^\infty b_n \sin\left(\frac{2\pi n x}{L}\right)\tag{4.6.2} \end{equation}
where
\begin{align} a_0 \amp = \frac{2}{L} \int_0^{\frac{L}{2}}\, C\,dx = C,\tag{4.6.3}\\ a_n \amp = \frac{2}{L} \int_0^{\frac{L}{2}} \cos\left(\frac{2\pi nx}{L}\right) \, C\,dx = 0 ,\tag{4.6.4}\\ b_n \amp = \frac{2}{L} \int_0^{\frac{L}{2}} \sin\left(\frac{2\pi nx}{L}\right) \, C\,dx = \begin{cases} \frac{2C}{\pi n} \amp \hbox{($n$ odd)}\\ 0 \amp \hbox{($n$ even)} \end{cases}\tag{4.6.5} \end{align}
Putting this all together,
\begin{equation} f(x) = C\left(1 + \sum_{\substack{n=1\\ n\hspace{1.5pt}\mathrm{odd}} }^\infty \frac{2}{\pi n} \sin\left(\frac{2\pi nx}{L}\right)\right)\text{.}\tag{4.6.6} \end{equation}
It is instructive to plot the first few terms of this Fourier series and watch the approximation improve as more terms are included, as shown in Figure 45.
Figure 45. The first few partial sums in the Fourier series for a step function.