Section 17.4 The Magnetic Field of a Straight Wire
Consider the magnetic field of a finite segment of straight wire along the \(z\)-axis carrying a steady current \(\II=I\,\zhat\text{.}\)
The Biot-Savart Law for a linear current density is:
\begin{gather}
\BB(\vec{r})
= - {\mu_0 I\over 4\pi}
\Int_{\textrm{Source}} {(\rr-\rrp)\times d\rrp\over|\rr-\rrp|^3} .\tag{17.4.1}
\end{gather}
Choosing to put the wire on the axis of cylindrical coordinates, we have
\begin{align*}
\rr \amp= r\,\rhat + z\,\zhat ,\\
\rrp \amp= z'\,\zhat ,
\end{align*}
\begin{align*}
- (\rr-\rrp)\times d\rr
\amp= - \bigl(r\,\rhat + (z-z')\,\zhat\bigr) \times dz'\,\zhat\\
\amp= r\,dz'\,\phat
\end{align*}
which gives the expected right-hand rule behavior for the direction of the magnetic field. We therefore have
\begin{align}
\BB(r, \phi, z)
\amp= \frac{\mu_0 I}{4\pi} \> r\,\phat
\Int_{-L}^{L} \frac{dz'}{\bigl(r^2+(z-z')^2\bigr)^{3/2}}\notag\\
\amp= - \frac{\mu_0 I}{4\pi}\> \frac{\phat}{r}
\frac{(z-z')}{\sqrt{r^2+(z-z')^2}} \Bigg|_{-L}^L\notag\\
\amp= - \frac{\mu_0 I}{4\pi}\> \frac{\phat}{r}
\left(\frac{(z-L)}{\sqrt{r^2+(z-L)^2}}
-\frac{(z+L)}{\sqrt{r^2+(z+L)^2}}\right)\tag{17.4.2}
\end{align}
Activity 17.4.1. Limiting Case: The Infinite Wire.
An important special case is an infinite wire. Take the limit of
Equation (17.4.2) as
\(L\to\infty\text{,}\) to obtain an expression for the magentic field due to an infinite wire.
Solution.
\begin{gather}
\BB(r,\phi,z) = {\mu_0 I\over 2\pi} \> \frac{\phat}{r}\tag{17.4.3}
\end{gather}
We will in
Section 18.1 that the result
Equation (17.4.3) for the infinite wire can be derived more simply using symmetry and Ampère’s Law, an approach which fails however for the finite wire.