Skip to main content Contents Index
Prev Up Next \(\newcommand{\vf}[1]{\mathbf{\boldsymbol{\vec{#1}}}}
\renewcommand{\Hat}[1]{\mathbf{\boldsymbol{\hat{#1}}}}
\let\VF=\vf
\let\HAT=\Hat
\newcommand{\Prime}{{}\kern0.5pt'}
\newcommand{\PARTIAL}[2]{{\partial^2#1\over\partial#2^2}}
\newcommand{\Partial}[2]{{\partial#1\over\partial#2}}
\newcommand{\tr}{{\mathrm tr}}
\newcommand{\CC}{{\mathbb C}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\KK}{{\mathbb K}}
\newcommand{\RR}{{\mathbb R}}
\newcommand{\HR}{{}^*{\mathbb R}}
\renewcommand{\AA}{\vf{A}}
\newcommand{\BB}{\vf{B}}
\newcommand{\CCv}{\vf{C}}
\newcommand{\EE}{\vf{E}}
\newcommand{\FF}{\vf{F}}
\newcommand{\GG}{\vf{G}}
\newcommand{\HHv}{\vf{H}}
\newcommand{\II}{\vf{I}}
\newcommand{\JJ}{\vf{J}}
\newcommand{\KKv}{\vf{Kv}}
\renewcommand{\SS}{\vf{S}}
\renewcommand{\aa}{\VF{a}}
\newcommand{\bb}{\VF{b}}
\newcommand{\ee}{\VF{e}}
\newcommand{\gv}{\VF{g}}
\newcommand{\iv}{\vf{imath}}
\newcommand{\rr}{\VF{r}}
\newcommand{\rrp}{\rr\Prime}
\newcommand{\uu}{\VF{u}}
\newcommand{\vv}{\VF{v}}
\newcommand{\ww}{\VF{w}}
\newcommand{\grad}{\vf{\nabla}}
\newcommand{\zero}{\vf{0}}
\newcommand{\Ihat}{\Hat I}
\newcommand{\Jhat}{\Hat J}
\newcommand{\nn}{\Hat n}
\newcommand{\NN}{\Hat N}
\newcommand{\TT}{\Hat T}
\newcommand{\ihat}{\Hat\imath}
\newcommand{\jhat}{\Hat\jmath}
\newcommand{\khat}{\Hat k}
\newcommand{\nhat}{\Hat n}
\newcommand{\rhat}{\HAT r}
\newcommand{\shat}{\HAT s}
\newcommand{\xhat}{\Hat x}
\newcommand{\yhat}{\Hat y}
\newcommand{\zhat}{\Hat z}
\newcommand{\that}{\Hat\theta}
\newcommand{\phat}{\Hat\phi}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\DD}[1]{D_{\textrm{$#1$}}}
\newcommand{\bra}[1]{\langle#1|}
\newcommand{\ket}[1]{|#1\rangle}
\newcommand{\braket}[2]{\langle#1|#2\rangle}
\newcommand{\LargeMath}[1]{\hbox{\large$#1$}}
\newcommand{\INT}{\LargeMath{\int}}
\newcommand{\OINT}{\LargeMath{\oint}}
\newcommand{\LINT}{\mathop{\INT}\limits_C}
\newcommand{\Int}{\int\limits}
\newcommand{\dint}{\mathchoice{\int\!\!\!\int}{\int\!\!\int}{}{}}
\newcommand{\tint}{\int\!\!\!\int\!\!\!\int}
\newcommand{\DInt}[1]{\int\!\!\!\!\int\limits_{#1~~}}
\newcommand{\TInt}[1]{\int\!\!\!\int\limits_{#1}\!\!\!\int}
\newcommand{\Bint}{\TInt{B}}
\newcommand{\Dint}{\DInt{D}}
\newcommand{\Eint}{\TInt{E}}
\newcommand{\Lint}{\int\limits_C}
\newcommand{\Oint}{\oint\limits_C}
\newcommand{\Rint}{\DInt{R}}
\newcommand{\Sint}{\int\limits_S}
\newcommand{\Item}{\smallskip\item{$\bullet$}}
\newcommand{\LeftB}{\vector(-1,-2){25}}
\newcommand{\RightB}{\vector(1,-2){25}}
\newcommand{\DownB}{\vector(0,-1){60}}
\newcommand{\DLeft}{\vector(-1,-1){60}}
\newcommand{\DRight}{\vector(1,-1){60}}
\newcommand{\Left}{\vector(-1,-1){50}}
\newcommand{\Down}{\vector(0,-1){50}}
\newcommand{\Right}{\vector(1,-1){50}}
\newcommand{\ILeft}{\vector(1,1){50}}
\newcommand{\IRight}{\vector(-1,1){50}}
\newcommand{\Partials}[3]
{\displaystyle{\partial^2#1\over\partial#2\,\partial#3}}
\newcommand{\Jacobian}[4]{\frac{\partial(#1,#2)}{\partial(#3,#4)}}
\newcommand{\JACOBIAN}[6]{\frac{\partial(#1,#2,#3)}{\partial(#4,#5,#6)}}
\newcommand{\LLv}{\vf{L}}
\newcommand{\OOb}{\boldsymbol{O}}
\newcommand{\PPv}{\vf{P}_\text{cm}}
\newcommand{\RRv}{\vf{R}_\text{cm}}
\newcommand{\ff}{\vf{f}}
\newcommand{\pp}{\vf{p}}
\newcommand{\tauv}{\vf{\tau}}
\newcommand{\Lap}{\nabla^2}
\newcommand{\Hop}{H_\text{op}}
\newcommand{\Lop}{L_\text{op}}
\newcommand{\Hhat}{\hat{H}}
\newcommand{\Lhat}{\hat{L}}
\newcommand{\defeq}{\overset{\rm def}{=}}
\newcommand{\absm}{\vert m\vert}
\newcommand{\ii}{\ihat}
\newcommand{\jj}{\jhat}
\newcommand{\kk}{\khat}
\newcommand{\dS}{dS}
\newcommand{\dA}{dA}
\newcommand{\dV}{d\tau}
\renewcommand{\ii}{\xhat}
\renewcommand{\jj}{\yhat}
\renewcommand{\kk}{\zhat}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 11.8 The electric field of a uniform disk
Recall that the electric field on a surface is given by
\begin{gather*}
\EE(\rr) = \int \frac{1}{4\pi\epsilon_0}
\frac{\sigma(\rrp)(\rr-\rrp)\,dA}{|\rr-\rrp|^3}
\end{gather*}
Let’s find the electric field due to a charged disk, on the axis of symmetry.
In cylindrical coordinates, we have
\begin{gather*}
\rr - \rrp = z\,\zhat - r'\,\rhat\Prime
\end{gather*}
(where we write \(\rhat\Prime\) to emphasize that this basis is associated with \(\rrp\) ). The integral becomes
\begin{gather*}
\EE(z) = \Int_0^{2\pi}\Int_0^R
\frac{\sigma}{4\pi\epsilon_0}
\frac{(z\,\zhat-r'\,\rhat\Prime)\,r'\,dr'\,d\phi'}
{(z^2 + r'^2)^{3/2}}
\end{gather*}
It is important to note that \(\rhat\Prime\) can not be pulled out of the integral, since it is not constant. Quite the opposite, by symmetry, this integral must vanish! Explicitly, writing
\begin{gather*}
\rhat\Prime = r'\cos\phi'\,\ii + r'\sin\phi'\,\jj
\end{gather*}
and then integrating will indeed yield zero. The remaining term is
\begin{align*}
\EE(z)
\amp= \Int_0^{2\pi}\Int_0^R
\frac{\sigma}{4\pi\epsilon_0}
\frac{z\,r'\,dr'\,d\phi'} {(z^2 + r'^2)^{3/2}} \> \zhat\\
\amp= -\frac{\sigma\,\zhat}{4\pi\epsilon_0}
\frac{2\pi z}{\sqrt{z^2+r'^2}} \Bigg|_0^R
= \frac{2\pi\sigma\,\zhat}{4\pi\epsilon_0}
\left( \frac{z}{\sqrt{z^2}} - \frac{z}{\sqrt{z^2+R^2}} \right)
\end{align*}
Recall that the electric field of a uniform disk is given along the axis by
\begin{gather*}
\EE(z)
= \frac{2\pi\sigma}{4\pi\epsilon_0}
\left(
\frac{z}{\sqrt{z^2}} - \frac{z}{\sqrt{z^2+R^2}}
\right)\,\zhat
\end{gather*}
where of course \(\frac{z}{\sqrt{z^2}}=\pm1\) depending on the sign of \(z\text{.}\) (The notation \({ sgn}(z)\) is often used to represent the sign of \(z\text{,}\) in order to simplify expressions like \(\frac{z}{\sqrt{z^2}}\text{.}\) ) In the limit as \(R\to\infty\text{,}\) one gets the electric field of a uniformly charged plane, which is just
\begin{gather*}
\EE(z) = \hbox{sgn}(z) \> \frac{\sigma}{2\epsilon_0}\,\zhat
\end{gather*}
which is valid everywhere, as any point can be thought of as being on the axis.