Skip to main content

Section A.3 Integration by parts

For ordinary functions of one variable, the rule for integration by parts follows immediately from integrating the product rule

\begin{align*} \frac{d}{dx}(fg) \amp= \frac{df}{dx}g+f\frac{dg}{dx} ,\\ \int_a^b\frac{d}{dx}(fg)\, dx \amp= \int_a^b\frac{df}{dx}g\, dx + \int_a^b f\frac{dg}{dx}\, dx ,\\ \left. fg \right\vert_a^b \amp= \int_a^b\frac{df}{dx}g\, dx + \int_a^b f\frac{dg}{dx}\, dx . \end{align*}

Rearranging, we obtain

\begin{equation*} \int_a^b\frac{df}{dx}g\, dx = fg \Big\vert_a^b - \int_a^b f\frac{dg}{dx}\, dx . \end{equation*}

In an analogous way, we can obtain a rule for integration by parts for the divergence of a vector field by starting from the product rule for the divergence

\begin{gather*} \grad\cdot(f\GG) = (\grad f) \cdot \GG + f \, (\grad\cdot\GG) . \end{gather*}

Integrating both sides yields

\begin{gather*} \int \grad\cdot(f\GG) \,d\tau = \int (\grad f) \cdot \GG \,d\tau + \int f \, (\grad\cdot\GG) \,d\tau . \end{gather*}

Now use the Divergence Theorem to rewrite the first term, leading to

\begin{gather*} \int (f\GG) \cdot d\AA = \int (\grad f) \cdot \GG \,d\tau + \int f \, (\grad\cdot\GG) \,d\tau \end{gather*}

which can be rearranged to

\begin{gather*} \int f \, (\grad\cdot\GG) \,d\tau = \int (f\GG) \cdot d\AA - \int (\grad f) \cdot \GG \,d\tau \end{gather*}

which is the desired integration by parts.