Section A.4 Null Rotations over \(\HH'\otimes\CC\)
Consider \(3+1\)-dimensional Minkowski space, with coordinates \((T,X,Y,Z)\text{.}\) As usual, we can represent Minkowski 4-vectors as \(2\times2\) Hermitian matrices
\begin{equation}
\XX_0
= \begin{pmatrix} T+Z & X-iY \\ X+iY & T-Z \\ \end{pmatrix} ,\tag{A.4.1}
\end{equation}
or equivalently over \(\CC'\otimes\CC\) as
\begin{equation}
\YY_0
= \begin{pmatrix} T\,L+Z & X-iY \\ X+iY & T\,L-Z \\ \end{pmatrix} ;\tag{A.4.2}
\end{equation}
in either case, the norm is given by (\(-1\) times) the determinant, since
\begin{equation}
\det\XX_0
= \det\YY_0 = T^2 - X^2 - Y^2 - Z^2 .\tag{A.4.3}
\end{equation}
Extend this description to \(\so(4,2)\cong\su(2,\HH'\otimes\CC)\text{,}\) acting on matrices of the form
\begin{equation}
\YY
= \begin{pmatrix}
Z+T\,L+p\,K+q\,KL & X-iY \\ X+iY & -Z+T\,L+p\,K+q\,KL \\
\end{pmatrix} ,\tag{A.4.4}
\end{equation}
where now
\begin{equation}
\det\YY = T^2 -
X^2 - Y^2 - Z^2 - p^2 + q^2 .\tag{A.4.5}
\end{equation}
Rotations in the \((X,P)\) plane, and similarly boosts in the \((X,Q)\) plane, are generated by
\begin{equation}
r_X
= \begin{pmatrix} 0 & K \\ K & 0 \\ \end{pmatrix} ,
\qquad b_X
= \begin{pmatrix} 0 & KL \\ KL & 0 \\ \end{pmatrix} .\tag{A.4.6}
\end{equation}
respectively. What happens if we add these elements of the Lie algebra \(\so(4,2)\) together? Exponentiating \(r_X\pm b_X\) is easy. Since
\begin{equation}
(K\pm KL)^2 = K(1\pm L)K(1\pm L) = K(1\pm L)(1\mp L)K = 0 ,\tag{A.4.7}
\end{equation}
we have
\begin{align}
\exp{[(r_x\pm b_x)\alpha]}
\amp= 1 + (r_x\pm b_x)\alpha\notag\\
\amp= \begin{pmatrix}
1 & (K\pm KL)\,\alpha \\ (K\pm KL)\,\alpha & 1 \\
\end{pmatrix} .\tag{A.4.8}
\end{align}
Such transformations are called null rotations; they are neither rotations nor boosts. We can repeat this construction using any linear combination of \(X,Y,Z,T\) instead of \(X\text{;}\) the resulting null transformation is given by the group element
\begin{equation}
1 + (K\pm KL) \YY_0 \alpha = 1 \pm (K\pm KL) \XX_0 \alpha ,\tag{A.4.9}
\end{equation}
with generator
\begin{equation}
(K\pm KL) \YY_0 = \pm(K\pm KL) \XX_0 ,\tag{A.4.10}
\end{equation}
where the equalities follow from the fact that \((K\pm KL)L=\pm(K\pm KL)\text{.}\)